U.G. 3rd Semester Examination - 2022

MATHEMATICS

[PROGRAMME]
Course Code: MATH-G-CC-T-03

(Real Analysis)

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and notations have their usual meanings.

1. Answer any ten questions:

 $2\times10=20$

- a) Write the order properties of the system R of real numbers.
- b) Prove that the set of all integral multiples of 5 is enumerable.
- Define the least upper bound of a bounded set and obtain it for the set $A = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$.
- d) Show that a non-empty finite set cannot be a neighbourhood of any point.
- Prove that the set $A = \{-1, 1, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, \dots\}$ is neither open nor closed.

- a) State and prove Cauchy's First Theorem on Limit.
- b) State and prove density property of the set of real numbers R.
- c) Prove that the interior of a set $S \subseteq R$ is an open set.
- Prove that if a sequence $\{x_n\}$ of real numbers is monotonic increasing and bounded above, then it converges to its exact upper bound.
- Find the interval of convergence of the power series $x + \frac{x^2}{2 \cdot 10} + \frac{x^3}{3 \cdot 10^2} + \dots + \frac{x^n}{n \cdot 10^{n-1}} + \dots \infty$.
- f) State and prove Comparison test for an infinite series of positive terms.
- g) Prove that if S is a closed subset of R then its compliment S^c is open in R.
- 3. Answer any two questions:
- $10 \times 2 = 20$
- i) Prove that the union of an enumerable number of enumerable sets is enumerable.
- Define derived set. With suitable examples show that arbitrary intersection of open sets may or may not be an open set.

6+(2+2)

(2)

441/Math

3

- b) i) State D'Alembert's Ratio Test for convergence or divergence of an infinite series of positive terms. Prove that the series $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$ is convergent.
 - ii) State Raabe's test for convergence and divergence of an infinite series of positive terms. Examine the convergence of the series $1 + \frac{3}{7} + \frac{3 \cdot 6}{7 \cdot 10} + \frac{3 \cdot 6 \cdot 9}{7 \cdot 10 \cdot 13} + \dots \infty$.

(2+3)+(2+3)

c) i) Show that the power series of $tan^{-1}x$ is given by

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \infty (-1 \le x \le 1).$$

Hence derive that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \infty$.

ii) Show that

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

(5+2)+3

- d) i) Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{6}$ and $x_{n+1} = \sqrt{6 + x_n}$ for $n \ge 1$, converges to 3.
 - ii) Show that $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$ by using Cauchy's second theorem on limit and hence show that $\lim_{n \to \infty} \frac{1}{n} \left(1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + ... + n^{\frac{1}{n}} \right) = 1$.

5+(3+2)

1st Internal Assessment 2024

MATH-MI-T-01(Minor)

Semester I

Algebra & Analytical Geometry

Time: 30 minutes Full Marks:10

1. Answer any two questions from the following

 $(2 \times 5 = 10)$

- a) If α , β be the roots of the equation $t^2 + 2t + 4 = 0$ and m is a positive integer, prove that $\alpha^m + \beta^m = 2^{m+1} \cos(\frac{2m\pi}{3})$
- b) Two complex numbers z_1, z_2 are such that $|z_1 + z_2| = |z_1 z_2|$ prove that amp z_1 and amp z_2 differ by $\frac{\pi}{2}$ or $\frac{3\pi}{2}$.
- c) Solve the equation $2x^4 3x^3 3x^2 3x 1 = 0$, one root being $1 + \sqrt{2}$.
- d) Solve the equation $x^3 + 6x^2 + 11x + 6 = 0$, given that the roots are in arithmetic progression.

Internal Examination

Semester-IV

B.Sc Programme

				_						
Sub: Mathematics (GCC)										
Answer all the questions as per instruction F.M: 15										
1. Express (5,2,1) as a linear combination of (1,1,0) and (3,0,1).										
sible	solutio	x_1	$+2x_{3}$	= 1						
3. What is convex set? Discuss whether the following set is convex or not $X = \{(x_1, x_2)/x_1 + 7x_2 = 5\}$										
						3				
4. Solve the following transportation problem										
	DES	TINA	TION							
2	11	10	3	7	4 -					
1	4	7	2	1	8					
3	3	4	<u>8</u>	12 6	9					
1	a lin sible t? Di 1 + 7 g trai	stions as a linear consible solution t? Discuss where $x_1 + 7x_2 = x_2$ g transportation	stions as per in a linear combinate sible solution of the x_1 of the x_2 of the x_2 of the x_2 of the x_2 of the x_3 of the x_4 of th	stions as per instractions as inear combination of a linear combination of the foll $x_1 + 2x_3$ $x_2 + x_3$ to Piscuss whether the following transportation problem DESTINATION	stions as per instruction a linear combination of $(1,1,0)$ sible solution of the following $x_1 + 2x_3 = 1$ $x_2 + x_3 = 4$, to Piscuss whether the following $x_1 + 7x_2 = 5$ g transportation problem DESTINATION	stions as per instruction a linear combination of $(1,1,0)$ and $(3,0,1)$. sible solution of the following system of equations $x_1 + 2x_3 = 1$ $x_2 + x_3 = 4, \text{if} x_1, x_2, x_3 \ge 0$ t? Discuss whether the following set is convex or not $x_1 + x_2 + x_3 = 1$ $x_3 + x_4 + x_5 = 1$ the properties of the following set is convex or not $x_1 + x_2 = x_3 = 1$ and $x_2 + x_3 = x_4 = 1$ the properties of the following set is convex or not $x_1 + x_2 = x_3 = 1$ and $x_2 + x_3 = x_4 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ and $x_2 + x_3 = x_4 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_2 + x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$ the following set is convex or not $x_1 + x_2 = x_3 = 1$				

2ND Semister Internal Examination Math-Sec-T-02 Fuzzy Set Theory

F.M. -10

Time: 30 min.

Answer any two questions:

1. Define firzy set and Convex fuzzy set.

Show that a fuzzy set A on IR is convex if and only if

 $A(\lambda x_1 + (1-\lambda) x_1) \ge min [A(4), A(4)]$ for all $x_1 x_2 \in IR$ and for all $\lambda \in [0, 1]$.

[2+3]

2. Define for a fuzzy set h, A and and A and

Let $A(x) = \begin{cases} 1 & \text{when } x \le 20 \\ \frac{35-x}{15} & \text{when } 20 < x < 35 \end{cases}$

[2+3]

Find A and A for any & CIR.

3. Let A, 13 & F(X) and X + [21].

Prove that

a. ACB if and only if "AC"B ACB if and only if "AC"B

b. A=B if and only if $^{1}A=^{1}B$ and $^{1}A=^{1}B$ [2.5 +2.5]

2nd Semester Internal Examination 2024 MATHEMATICS (Major) Course Code: MATH-T-02

Course title: Algebra-I

Full Marks: 15

Time: 40 minute

Answer any THREE of the following

 $[5 \times 3 = 15]$

1. State De Moivre's theorem and using it show that If n is an integer then $\left(\frac{1+\sin(\theta)+i\cos(\theta)}{1+\sin(\theta)-i\cos(\theta)}\right)^n=\cos\left(\frac{n\pi}{2}-n\theta\right)+i\sin\left(\frac{n\pi}{2}-n\theta\right). \qquad [1+4=5 \text{ Marks}]$

2. Show that the ratio of the principal values of $(1+i)^{(1+i)}$ and $(1-i)^{(1-i)}$ is $\sin(\ln 2) + i\cos(\ln 2)$.

[5 Marks]

3. Solve the equation $x^4 - x^3 + 2x^2 - 2x + 4 = 0$ one of whose root is 1 + i. [5 Marks]

4. Solve the equation $x^3 - 6x + 4 = 0$ by Cardan Method. [5 Marks]

5. Examine the solvability of following system of equation and hence solve it [5 Marks]

$$x + y + z = 1$$

$$2x + y + 2z = 1$$

$$x + 2y + 3z = 0$$

Internal Examination -2024

Semester-II (NEP)

Sub: Mathematics (MINOR) F.M: 15

Time: 40 Min.

An	swe	er the given questions as per instruction (Any Five)	$3 \times 5 = 1$	5
	1.	Find the modulus and amplitude of the complex number $z = 1 + i \tan \frac{3\pi}{5}$	3	}
	2.	Show that the points representing the complex numbers $(2 + 3 i)$, $(4 + 6 i)$, $(8 + 12 i)$ argand plane are collinear.) in an 3	}
	3.	Solve the given differential equation $x^3 - 9x^2 + 23x - 15 = 0$, whose roots are Ari Progress.	thmetic	3
	4.	Solve the equation x^3 - $6x$ - $9 = 0$ by Cardan's method.	3	3
	5.	Is the following system of equations solvable? x + y + z = 4, $2x + 5y - 2z = 3$, $x + 7y - 7z = 5$		3
	6.	If, in a group G, $x^2 = e(identity\ element)$ for every $x \in G$, then prove that G is	s abelian.	3
	7.	If the pair of straight lines x^2 - 2pxy - y^2 = 0 and x^2 - 2qxy - y^2 = 0 be such that bisects angels between the other pair, prove that $pq = -1$	it each pair	

Internal Examination 2024

Semester-V

B.Sc Programme

Tin	ne: 40 min Sub: Mathematics (DSE)	F.M: 15
Ansv	ver the given question as per instruction (any five)	3 x 5 =15
	Prove that the set D of all odd integers forms a commutative group with r composition '*'defined by $a * b = a + b - 1$ for all $a, b \in D$.	espect to the
2.	Let (G, \circ) be a group. Define a mapping $f: G \to G$ by $f(x) = x^{-1}$, $x \in G$ is a bijection.	G. prove that
3.	Define cyclic group. Find all the cyclic subgroup of the group $(S, .)$ where $\{1, i, -1, -i\}$.	e S=
4.	Prove that every group of prime order is cyclic.	3
5.	Define the basis of vector space. Show that the set $S = \{(1,2,2), (2,1,2), (6,2,2)$	[2,2,1) }
6.	Find the dimension of the subspace S of R^4 defined by $S = \{(x, y, z, w) \in y + z + w = 0\}$	$R^4: x +$
7.	Find the eigen values of the following matrix	3
	$S = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$	3

3^{rd} Semester Internal Examination 2025 B.Sc Mathematics (Minor)

Course Code: MATH-MI-T-02 Course title: Calculus & Differential Equations

Full Marks: 15 Time: 30 minute

Answer any FIVE of the following $[3 \times 5 = 15]$

1. Show that by $\epsilon - \delta$ definition: $\lim_{x \to 3} x^3 = 27$. [3 Marks]

2. If $y = \frac{1}{(ax+b)^n}$, find y_n . [3 Marks]

3. If $y = tan^{-1}x$, show that

(i) $(1+x^2)y_1 = 1$, [1 Marks]

(ii) $(1+x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0.$ [2 Marks]

4. Find the value of $\lim_{x\to 0} \left(\frac{\sin(2x) + 7x^2 - 2x}{x^2(x+1)^2}\right)$. [3 Marks]

5. Find the reduction formula for $\int \sin^n x dx$ and using it find the

value of $\int_0^{\frac{\pi}{2}} \sin^n x dx$. [3 Marks]

6. Solve the ode: $y' - \frac{2y}{x} = -x^2y^2$. [3 Marks]

3rd Semester Internal Examination 2025 B.Sc Mathematics (Major)

Course Code: MATH-SEC-T-03 Course title: Programming in C

Full Marks: 10 Time: 30 minute Answer any TWO of the following $[5 \times 2 = 10]$ 1. Write a short note on the following statements: while, do-while, for [5 Marks] 2. Write a flow chart to verify a given number is prime or not. [5 Marks] 3. Write a C program to verify a given year is leap year or not. [5 Marks] 4. What is the output of the following C program: int main() int a=300,b=500,c;if(a > 300)b = 200;if(b > 300)c = 100;else c = 50; printf(" $\n^{d}\t^{d}\t^{d}$, a, b, c); return 0; [5 Marks]

Internal Examination, 2025 Semester-III

Full Marks: 15

Sub: Mathematics (Major)

Time: 40 min

Answer the following questions as per instruction (Any Five): $5 \times 3=15$

 Define supremum of a set. Determine the supremum and infimum of the following set

$$S = \{\frac{1}{m} + \frac{1}{n}/m, n \in N\}$$

- 2. Prove that the set of limit points of every sequence $\{x_n\}$ is a closed set.
- 3. If $0 \le x \le 1$, prove that the series $\sum \frac{x^n}{n^n}$ is convergent.
- 5. Examine if $\lim_{x\to 0} (\sin\frac{1}{x} + x \sin\frac{1}{x})$ exist or not.
- 6. State the *intermediate value theorem* for continuous function and using it prove that there exist $x \in (0, \frac{\pi}{2})$ such that $x = \cos x$.
- 7. State Lagrange mean Value theorem and using it prove that $\sin x < x < \tan x$ in $(0, \frac{\pi}{2})$